Crash data analyses based on accident datasets often do not include human-related variables because they can be hard to reconstruct from crash data. However, records of crash circumstances can help for this purpose since crashes can be classified considering aberrant behavior and misconduct of the drivers involved. In this case, urban crash data from the 10 largest Italian cities were used to develop four logistic regression models having the driver-related crash circumstance (aberrant behaviors: inattentive driving, illegal maneuvering, wrong interaction with pedestrian and speeding) as dependent variables and the other crash-related factors as predictors (information about the users and the vehicles involved and about road geometry and conditions). Two other models were built to study the influence of the same factors on the injury severity of the occupants of vehicles for which crash circumstances related to driver aberrant behaviors were observed and of the involved pedestrians. The variability between the 10 different cities was considered through a multilevel approach, which revealed a significant variability only for the inattention-related crash circumstance. In the other models, the variability between cities was not significant, indicating quite homogeneous results within the same country. The results show several relationships between crash factors (driver, vehicle or road-related) and human-related crash circumstances and severity. Unsignalized intersections were particularly related to the illegal maneuvering crash circumstance, while the night period was clearly related to the speeding-related crash circumstance and to injuries/casualties of vehicle occupants. Cyclists and motorcyclists were shown to suffer more injuries/casualties than car occupants, while the latter were generally those exhibiting more aberrant behaviors. Pedestrian casualties were associated with arterial roads, heavy vehicles, and older pedestrians.
Aberrant behaviors of drivers involved in crashes and related injury severity: Are there variations between the major cities in the same country?
Intini, Paolo
Primo
;
2024-01-01
Abstract
Crash data analyses based on accident datasets often do not include human-related variables because they can be hard to reconstruct from crash data. However, records of crash circumstances can help for this purpose since crashes can be classified considering aberrant behavior and misconduct of the drivers involved. In this case, urban crash data from the 10 largest Italian cities were used to develop four logistic regression models having the driver-related crash circumstance (aberrant behaviors: inattentive driving, illegal maneuvering, wrong interaction with pedestrian and speeding) as dependent variables and the other crash-related factors as predictors (information about the users and the vehicles involved and about road geometry and conditions). Two other models were built to study the influence of the same factors on the injury severity of the occupants of vehicles for which crash circumstances related to driver aberrant behaviors were observed and of the involved pedestrians. The variability between the 10 different cities was considered through a multilevel approach, which revealed a significant variability only for the inattention-related crash circumstance. In the other models, the variability between cities was not significant, indicating quite homogeneous results within the same country. The results show several relationships between crash factors (driver, vehicle or road-related) and human-related crash circumstances and severity. Unsignalized intersections were particularly related to the illegal maneuvering crash circumstance, while the night period was clearly related to the speeding-related crash circumstance and to injuries/casualties of vehicle occupants. Cyclists and motorcyclists were shown to suffer more injuries/casualties than car occupants, while the latter were generally those exhibiting more aberrant behaviors. Pedestrian casualties were associated with arterial roads, heavy vehicles, and older pedestrians.File | Dimensione | Formato | |
---|---|---|---|
JSR24.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
2.92 MB
Formato
Adobe PDF
|
2.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.