Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log10ρ2, where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9  fb−1 of √s=13  TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

Measurement of the Soft-Drop Jet Mass in pp Collisions at sqrt(s) = 13  TeV with the ATLAS Detector

G Chiodini;E Gorini;L Longo;A Mirto;M Primavera;M Reale;S Spagnolo;A Ventura;
2018-01-01

Abstract

Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log10ρ2, where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9  fb−1 of √s=13  TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/425142
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 931
social impact