A highly dense and uniform layer of Au nanoparticles (NPs) on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film has been produced by the pulsed laser deposition (PLD) technique toward the production of an improved efficiency photovoltaic device. The advantage of PLD over other techniques is the easy and precise control of the Au NPs size and spatial distribution, without needing of further NP surface functionalization. The efficiency enhancement factor related to Au NPs doping has been evaluated in a solar cell based on poly-(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) diffused bilayer. The short-circuit current density, J SC, increases by 18 % and the power conversion efficiency by 22 %, respectively, in comparison with an equivalent device without Au NPs. The optical and morphological properties of the Au NPs layer have been selected in order to evaluate the contribution of the surface plasmon resonance as enhancement factor of the solar cell efficiency, in a range size where light scattering is negligible.

Pulsed laser deposition of a dense and uniform Au nanoparticles layer for surface plasmon enhanced efficiency hybrid solar cells

RESTA, VINCENZO;CARICATO, Anna Paola;GIGLI, Giuseppe;MARTINO, Maurizio
2013-01-01

Abstract

A highly dense and uniform layer of Au nanoparticles (NPs) on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film has been produced by the pulsed laser deposition (PLD) technique toward the production of an improved efficiency photovoltaic device. The advantage of PLD over other techniques is the easy and precise control of the Au NPs size and spatial distribution, without needing of further NP surface functionalization. The efficiency enhancement factor related to Au NPs doping has been evaluated in a solar cell based on poly-(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) diffused bilayer. The short-circuit current density, J SC, increases by 18 % and the power conversion efficiency by 22 %, respectively, in comparison with an equivalent device without Au NPs. The optical and morphological properties of the Au NPs layer have been selected in order to evaluate the contribution of the surface plasmon resonance as enhancement factor of the solar cell efficiency, in a range size where light scattering is negligible.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/380682
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
social impact