The ability of shape-controlled octahedral Pt nanoparticles to act as nanozyme mimicking glucose oxidase enzyme is reported. Extended {111} particle surface facets coupled with a size comparable to natural enzymes and easy-to-remove citrate coating give high affinity for glucose, comparable to the enzyme as proven by the steady-state kinetics of glucose electrooxidation. The easy and thorough removal of the citrate coating, demonstrated by X-ray photoelectron spectroscopy analysis, allows a highly stable deposition of the nanozymes on the electrode. The glucose electrochemical detection (at -0.2 V vs SCE) shows a linear response between 0.36 and 17 mM with a limit of detection of 110 mu M. A good reproducibility has been achieved, with an average relative standard deviation (RSD) value of 9.1% (n = 3). Similarly, a low intra-sensor variability has been observed, with a RSD of 6.6% (n = 3). Moreover, the sensor shows a long-term stability with reproducible performances for at least 2 months (RSD: 7.8%). Tests in saliva samples show the applicability of Pt nanozymes to commercial systems for non-invasive monitoring of hyperglycemia in saliva, with recoveries ranging from 92 to 98%.

Nanozymes based on octahedral platinum nanocrystals with {111} surface facets: glucose oxidase mimicking activity in electrochemical sensors

Mazzotta, Elisabetta
Primo
;
Di Giulio, Tiziano
Secondo
;
Pompa, Pier Paolo;Malitesta, Cosimino
Ultimo
2023-01-01

Abstract

The ability of shape-controlled octahedral Pt nanoparticles to act as nanozyme mimicking glucose oxidase enzyme is reported. Extended {111} particle surface facets coupled with a size comparable to natural enzymes and easy-to-remove citrate coating give high affinity for glucose, comparable to the enzyme as proven by the steady-state kinetics of glucose electrooxidation. The easy and thorough removal of the citrate coating, demonstrated by X-ray photoelectron spectroscopy analysis, allows a highly stable deposition of the nanozymes on the electrode. The glucose electrochemical detection (at -0.2 V vs SCE) shows a linear response between 0.36 and 17 mM with a limit of detection of 110 mu M. A good reproducibility has been achieved, with an average relative standard deviation (RSD) value of 9.1% (n = 3). Similarly, a low intra-sensor variability has been observed, with a RSD of 6.6% (n = 3). Moreover, the sensor shows a long-term stability with reproducible performances for at least 2 months (RSD: 7.8%). Tests in saliva samples show the applicability of Pt nanozymes to commercial systems for non-invasive monitoring of hyperglycemia in saliva, with recoveries ranging from 92 to 98%.
File in questo prodotto:
File Dimensione Formato  
s00604-023-05992-9.pdf

accesso aperto

Descrizione: articolo su rivista
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 4.5 MB
Formato Adobe PDF
4.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/503686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact