A determination of the jet energy scale is presented using proton–proton collision data with a centre-of-mass energy of sqrt(s) = 13 TeV, corresponding to an integrated luminosity of 140 fb−1 collected using the ATLAS detector at the LHC. Jets are reconstructed using the ATLAS particle-flow method that combines charged-particle tracks and topo-clusters formed from energy deposits in the calorimeter cells. The anti-kt jet algorithm with radius parameter R=0.4 is used to define the jet. Novel jet energy scale calibration strategies developed for the LHC Run 2 are reported that lay the foundation for the jet calibration in Run 3. Jets are calibrated with a series of simulation-based corrections, including state-of-the-art techniques in jet calibration such as machine learning methods and novel in situ calibrations to achieve better performance than the baseline calibration derived using up to 81 fb−1 of Run 2 data. The performance of these new techniques is then examined in the in situ measurements by exploiting the transverse momentum balance between a jet and a reference object. The b-quark jet energy scale using particle flow jets is measured for the first time with around 1% precision using γ+jet events.

New techniques for jet calibration with the ATLAS detector

M Centonze;G Chiodini;E Gorini;S Grancagnolo;FG Gravili;M Greco;A Palazzo;M Primavera;S Spagnolo;A Ventura;
2023-01-01

Abstract

A determination of the jet energy scale is presented using proton–proton collision data with a centre-of-mass energy of sqrt(s) = 13 TeV, corresponding to an integrated luminosity of 140 fb−1 collected using the ATLAS detector at the LHC. Jets are reconstructed using the ATLAS particle-flow method that combines charged-particle tracks and topo-clusters formed from energy deposits in the calorimeter cells. The anti-kt jet algorithm with radius parameter R=0.4 is used to define the jet. Novel jet energy scale calibration strategies developed for the LHC Run 2 are reported that lay the foundation for the jet calibration in Run 3. Jets are calibrated with a series of simulation-based corrections, including state-of-the-art techniques in jet calibration such as machine learning methods and novel in situ calibrations to achieve better performance than the baseline calibration derived using up to 81 fb−1 of Run 2 data. The performance of these new techniques is then examined in the in situ measurements by exploiting the transverse momentum balance between a jet and a reference object. The b-quark jet energy scale using particle flow jets is measured for the first time with around 1% precision using γ+jet events.
File in questo prodotto:
File Dimensione Formato  
epjc_c83_761.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 7.7 MB
Formato Adobe PDF
7.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/501626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact