The rotation of the galactic halos is a fascinating topic which is still waiting to be addressed. Planck data have shown the existence of a temperature asymmetry towards the halo of several nearby galaxies, such as M31, NGC 5128, M33, M81 and M82. However, the cause of this asymmetry is an open problem. A possibility to explain the observed effect relies on the presence of “cold gas clouds” populating the galactic halos, which may be the answer to the so-called missing baryon problem. Here, we present a technique to estimate an upper limit to the rotational velocity of the halo of some nearby spiral galaxies using both their dynamical masses and the Planck data.
Seeing the halo rotation of nearby spiral galaxies using Planck data
Tahir N.;De Paolis F.;Nucita A. A.
2019-01-01
Abstract
The rotation of the galactic halos is a fascinating topic which is still waiting to be addressed. Planck data have shown the existence of a temperature asymmetry towards the halo of several nearby galaxies, such as M31, NGC 5128, M33, M81 and M82. However, the cause of this asymmetry is an open problem. A possibility to explain the observed effect relies on the presence of “cold gas clouds” populating the galactic halos, which may be the answer to the so-called missing baryon problem. Here, we present a technique to estimate an upper limit to the rotational velocity of the halo of some nearby spiral galaxies using both their dynamical masses and the Planck data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.