Surface enhanced Raman scattering (SERS) is largely used as a transduction method for analytes detection in liquid and vapor phase. In particular, SERS effect was promoted by a plethora of different metal and semiconducting nanoparticles (NPs) and silver and gold nanoparticles appear particularly suitable for this application. Nevertheless, silver nanoparticles intrinsic propensity to aggregate in large clusters reduces the possibility to use naked nanoparticles in SERS applications, for this reason they are usually functionalized with organic molecules. This approach inhibits the aggregation process but, on the other hand, reduces the surficial area of the NPs able to interact with the analyte molecules. In the present work, we propose a simple method to obtain surficial anisotropic Janus silver nanoparticles: octadecylamine was used to stabilize the nanoparticles and to promote the deposition of the silver nanoparticles on a solid substrate. The AgNPs/octadecylamine nanostructures showed the typical “hairy” Janus morphology and a strong SERS effect was observed when two biogenic amines, i. e. 2-phenylethylamine and tyramine, were fluxed on the solid film. SERS phenomenon was studied as a function both of the chemical structure of the fluxed amine and of the distance between the aromatic moiety and the nanoparticle allowing to propose the AgNPs/octadecylamine Janus nanoparticles as an active layer for the detection of phenylethylamine and tyramine in picomolar concentration.
Sub-nanomolar detection of biogenic amines by SERS effect induced by hairy Janus silver nanoparticles
Buccolieri AlessandroPrimo
Investigation
;Bettini SimonaSecondo
Investigation
;Salvatore LucaInvestigation
;Baldassarre FrancescaInvestigation
;Ciccarella GiuseppePenultimo
Investigation
;Giancane Gabriele
Ultimo
Supervision
2018-01-01
Abstract
Surface enhanced Raman scattering (SERS) is largely used as a transduction method for analytes detection in liquid and vapor phase. In particular, SERS effect was promoted by a plethora of different metal and semiconducting nanoparticles (NPs) and silver and gold nanoparticles appear particularly suitable for this application. Nevertheless, silver nanoparticles intrinsic propensity to aggregate in large clusters reduces the possibility to use naked nanoparticles in SERS applications, for this reason they are usually functionalized with organic molecules. This approach inhibits the aggregation process but, on the other hand, reduces the surficial area of the NPs able to interact with the analyte molecules. In the present work, we propose a simple method to obtain surficial anisotropic Janus silver nanoparticles: octadecylamine was used to stabilize the nanoparticles and to promote the deposition of the silver nanoparticles on a solid substrate. The AgNPs/octadecylamine nanostructures showed the typical “hairy” Janus morphology and a strong SERS effect was observed when two biogenic amines, i. e. 2-phenylethylamine and tyramine, were fluxed on the solid film. SERS phenomenon was studied as a function both of the chemical structure of the fluxed amine and of the distance between the aromatic moiety and the nanoparticle allowing to propose the AgNPs/octadecylamine Janus nanoparticles as an active layer for the detection of phenylethylamine and tyramine in picomolar concentration.File | Dimensione | Formato | |
---|---|---|---|
sens&actuators.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Creative commons
Dimensione
787.32 kB
Formato
Adobe PDF
|
787.32 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.