The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3 fb−1 of proton--proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for tt¯ events in the lepton+jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-kt jet with radius parameter R=1.0 and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.
Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in sqrt(s) = 8 TeV proton-proton collisions using the ATLAS detector
CHIODINI, GABRIELE;GORINI, Edoardo;PRIMAVERA, Margherita;SPAGNOLO, Stefania Antonia;VENTURA, Andrea
2016-01-01
Abstract
The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3 fb−1 of proton--proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for tt¯ events in the lepton+jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-kt jet with radius parameter R=1.0 and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.