A rigorous theory of the inverse scattering transform for the defocusing nonlinear Schrödinger equation with nonvanishing boundary values is presented. The direct problem is shown to be well posed for potentials in a suitable functional class, for which analyticity properties of eigenfunctions and scattering data are established. The inverse scattering problem is formulated and solved both via Marchenko integral equations, and as a Riemann-Hilbert problem in terms of a suitable uniform variable. The asymptotic behavior of the scattering data is determined and shown to ensure the linear system solving the inverse problem is well defined. Finally, the triplet method is developed as a tool to obtain explicit multisoliton solutions by solving the Marchenko integral equation via separation of variables.

The inverse scattering transform for the defocusing nonlinear Schrödinger equation with nonzero boundary conditions

PRINARI, Barbara;VITALE, FEDERICA
2013-01-01

Abstract

A rigorous theory of the inverse scattering transform for the defocusing nonlinear Schrödinger equation with nonvanishing boundary values is presented. The direct problem is shown to be well posed for potentials in a suitable functional class, for which analyticity properties of eigenfunctions and scattering data are established. The inverse scattering problem is formulated and solved both via Marchenko integral equations, and as a Riemann-Hilbert problem in terms of a suitable uniform variable. The asymptotic behavior of the scattering data is determined and shown to ensure the linear system solving the inverse problem is well defined. Finally, the triplet method is developed as a tool to obtain explicit multisoliton solutions by solving the Marchenko integral equation via separation of variables.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/386266
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 79
social impact