Autonomous vehicle operations in outdoor environments challenge robotic perception. Construction, mining, agriculture, and planetary exploration environments are examples in which the presence of dust, fog, rain, changing illumination due to low sun angles, and lack of contrast can dramatically degrade conventional stereo and laser sensing. Nonetheless, environment perception can still succeed under compromised visibility through the use of a millimeter-wave radar. Radar also allows for multiple object detection within a single beam, whereas other range sensors are limited to one target return per emission. However, radar has shortcomings as well, such as a large footprint, specularity effects, and limited range resolution, all of which may result in poor environment survey or difficulty in interpretation. This paper presents a novelmethod for ground segmentation using a millimeter-wave radar mounted on a ground vehicle. Issues relevant to short-range perception in an outdoor environment are described along with field experiments and a quantitative comparison to laser data. The ability to classify the ground is successfully demonstrated in clear and low-visibility conditions, and significant improvement in range accuracy is shown. Finally, conclusions are drawn on the utility of millimeter-wave radar as a robotic sensor for persistent and accurate perception in natural scenarios.

Radar-based perception for autonomous outdoor vehicles

REINA, GIULIO;
2011-01-01

Abstract

Autonomous vehicle operations in outdoor environments challenge robotic perception. Construction, mining, agriculture, and planetary exploration environments are examples in which the presence of dust, fog, rain, changing illumination due to low sun angles, and lack of contrast can dramatically degrade conventional stereo and laser sensing. Nonetheless, environment perception can still succeed under compromised visibility through the use of a millimeter-wave radar. Radar also allows for multiple object detection within a single beam, whereas other range sensors are limited to one target return per emission. However, radar has shortcomings as well, such as a large footprint, specularity effects, and limited range resolution, all of which may result in poor environment survey or difficulty in interpretation. This paper presents a novelmethod for ground segmentation using a millimeter-wave radar mounted on a ground vehicle. Issues relevant to short-range perception in an outdoor environment are described along with field experiments and a quantitative comparison to laser data. The ability to classify the ground is successfully demonstrated in clear and low-visibility conditions, and significant improvement in range accuracy is shown. Finally, conclusions are drawn on the utility of millimeter-wave radar as a robotic sensor for persistent and accurate perception in natural scenarios.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/361389
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 42
social impact