The influence of substrate temperature on the composition and crystallinity of boron carbonitride (BCN) thin films deposited on (100) Si substrates by sequential pulsed laser deposition (PLD) has been investigated. A correlation between the target composition, the nitrogen pressure involved in the process, and the amount of B, C, and N elements (at %) in the deposited films is established from energy dispersive spectroscopy (EDS) analysis. Electron microscopy studies show that the films deposited on heated substrates are mainly amorphous. Fourier-transform infrared spectroscopy (FTIR) analysis confirms the BCN-compound formation: the peak of C-BN and the peaks from B-N-B bending vibrations and C-N sigma-bond vibrations are present in the spectra. SEM studies show that the deposited films have a smooth surface, with no cracks and few droplets. Results were compared with those obtained on films deposited at room temperature under similar experimental conditions.
Titolo: | Influence Of The Substrate Temperature On BCN Films Deposited By Sequential Pulsed Laser Deposition |
Autori: | |
Data di pubblicazione: | 1999 |
Rivista: | |
Abstract: | The influence of substrate temperature on the composition and crystallinity of boron carbonitride (BCN) thin films deposited on (100) Si substrates by sequential pulsed laser deposition (PLD) has been investigated. A correlation between the target composition, the nitrogen pressure involved in the process, and the amount of B, C, and N elements (at %) in the deposited films is established from energy dispersive spectroscopy (EDS) analysis. Electron microscopy studies show that the films deposited on heated substrates are mainly amorphous. Fourier-transform infrared spectroscopy (FTIR) analysis confirms the BCN-compound formation: the peak of C-BN and the peaks from B-N-B bending vibrations and C-N sigma-bond vibrations are present in the spectra. SEM studies show that the deposited films have a smooth surface, with no cracks and few droplets. Results were compared with those obtained on films deposited at room temperature under similar experimental conditions. |
Handle: | http://hdl.handle.net/11587/109572 |
Appare nelle tipologie: | Articolo pubblicato su Rivista |