Carbonaceous aerosols represent a significant component of atmospheric aerosol, with implications for climate and human health. The recent EU Directive 2024/2881 highlights the need to monitor emerging pollutants like black carbon more effectively. This study presents an brief field campaign at an urban background site aimed at characterizing carbonaceous aerosols. Daily samples of PM10 and PM2.5 were analyzed using a Sunset thermal-optical analyzer to determine organic and elemental carbon (OC, EC), while real-time equivalent black carbon (eBC) was measured with three independent instruments: MAAP, AE33, and Giano BC1. Total carbon (TC) was monitored using an online TCA08 thermo-catalytic analyzer. The average concentration of PM10 was 17.1 µg/m3 and 10.4 µg/m3 for PM2.5. On average, OC and EC represented 16.5% and 3.6% of PM10 mass, and 22.6% and 5.5% of PM2.5. SOC accounted for 36% of OC. The in situ Mass Absorption Cross-section (MAC), recalculated for the ECO site, was between 8.0 and 12.2 m2/g. eBC concentrations were modulated by the daily evolution of the planetary boundary-layer height and combustion sources. The apportionment of eBC was 65% from fossil fuel and 35% from biomass burning. Biomass-burning emissions were further confirmed by optical measurements, with BrC contributing 35% of absorption at 370 nm.
High-Time-Resolution Measurements of Equivalent Black Carbon in an Urban Background Site of Lecce, Italy
Ermelinda Bloise;Adelaide Dinoi;Giuseppe Deluca;Antonio Pennetta;Paola Semeraro;
2025-01-01
Abstract
Carbonaceous aerosols represent a significant component of atmospheric aerosol, with implications for climate and human health. The recent EU Directive 2024/2881 highlights the need to monitor emerging pollutants like black carbon more effectively. This study presents an brief field campaign at an urban background site aimed at characterizing carbonaceous aerosols. Daily samples of PM10 and PM2.5 were analyzed using a Sunset thermal-optical analyzer to determine organic and elemental carbon (OC, EC), while real-time equivalent black carbon (eBC) was measured with three independent instruments: MAAP, AE33, and Giano BC1. Total carbon (TC) was monitored using an online TCA08 thermo-catalytic analyzer. The average concentration of PM10 was 17.1 µg/m3 and 10.4 µg/m3 for PM2.5. On average, OC and EC represented 16.5% and 3.6% of PM10 mass, and 22.6% and 5.5% of PM2.5. SOC accounted for 36% of OC. The in situ Mass Absorption Cross-section (MAC), recalculated for the ECO site, was between 8.0 and 12.2 m2/g. eBC concentrations were modulated by the daily evolution of the planetary boundary-layer height and combustion sources. The apportionment of eBC was 65% from fossil fuel and 35% from biomass burning. Biomass-burning emissions were further confirmed by optical measurements, with BrC contributing 35% of absorption at 370 nm.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


