We consider systems of elliptic equations, possibly coupled up to the second order, on the Lp(Rd;Cm) scale. Under suitable assumptions, we prove that the minimal realization in Lp(Rd;Cm) generates a strongly continuous analytic semigroup. We also prove the consistency of the semigroups on the Lp scale and some spectral results.

Strongly coupled Schrödinger operators in Lp(Rd;Cm)

Angiuli L.
;
Mangino E. M.
2025-01-01

Abstract

We consider systems of elliptic equations, possibly coupled up to the second order, on the Lp(Rd;Cm) scale. Under suitable assumptions, we prove that the minimal realization in Lp(Rd;Cm) generates a strongly continuous analytic semigroup. We also prove the consistency of the semigroups on the Lp scale and some spectral results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/564268
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact