Periodontal dysbiosis contributes to liver injury through systemic inflammation, oral–gut microbial translocation, and endotoxemia. Lipopolysaccharides (LPSs) and virulence factors derived from periodontal pathogens, particularly Porphyromonas gingivalis (P. gingivalis) activate Toll-like receptor (TLR) signaling, trigger NF-κB-mediated cytokine release (e.g., TNF-α, IL-1β, IL-6), and promote oxidative stress and Kupffer cell activation within the liver. The present systematic review summarized clinical evidence supporting these mechanistic links between periodontal pathogens and hepatic outcomes, highlighting the role of microbial crosstalk in liver pathophysiology. A PRISMA-compliant systematic review was conducted by searching PubMed, Scopus, and the Cochrane library, as well as gray literature. Eligible study designs were observational studies and trials evaluating P. gingivalis and other periodontal pathogens (Aggregatibacter actinomycetemcomitans, Prevotella intermedia, and Tannerella forsythia) for liver phenotypes (Non-Alcoholic Fatty Liver Disease [NAFLD]/Metabolic Dysfunction-Associated Steatotic Liver Disease [MASLD], fibrosis/cirrhosis, acute alcoholic hepatitis [AAH], and Hepatocellular carcinoma [HCC]). Risk of bias was assessed using the Newcastle–Ottawa Scale adapted for cross-sectional studies (NOS-CS) for observational designs and the RoB 2 scale for single randomized controlled trials (RCTs). Due to the heterogeneity of exposures/outcomes, results were summarized narratively. In total, twenty studies (2012–2025; ~34,000 participants) met the inclusion criteria. Population-level evidence was conflicting (no clear association between anti-P. gingivalis serology and NAFLD), while clinical cohorts more frequently linked periodontal exposure, particularly to P. gingivalis, to more advanced liver phenotypes, including fibrosis. Microbiome studies suggested stage-related changes in oral communities rather than the effect of a single pathogen, and direct translocation into ascitic fluid was not observed in decompensated cirrhosis. Signals from interventional and behavioral research (periodontal therapy; toothbrushing frequency) indicate a potential modifiability of liver indices. The overall methodological quality was moderate with substantial heterogeneity, precluding meta-analysis. Current evidence supports a biologically plausible oral–liver axis in which periodontal inflammation, often involving P. gingivalis, is associated with liver damage. Causality has not yet been proven; however, periodontal evaluation and treatment may represent a low-risk option in periodontitis-associated NAFLD. Well-designed, multicenter prospective studies and randomized trials with standardized periodontal and liver measurements are needed.

Liver Disease and Periodontal Pathogens: A Bidirectional Relationship Between Liver and Oral Microbiota

Angelo Martella;
2025-01-01

Abstract

Periodontal dysbiosis contributes to liver injury through systemic inflammation, oral–gut microbial translocation, and endotoxemia. Lipopolysaccharides (LPSs) and virulence factors derived from periodontal pathogens, particularly Porphyromonas gingivalis (P. gingivalis) activate Toll-like receptor (TLR) signaling, trigger NF-κB-mediated cytokine release (e.g., TNF-α, IL-1β, IL-6), and promote oxidative stress and Kupffer cell activation within the liver. The present systematic review summarized clinical evidence supporting these mechanistic links between periodontal pathogens and hepatic outcomes, highlighting the role of microbial crosstalk in liver pathophysiology. A PRISMA-compliant systematic review was conducted by searching PubMed, Scopus, and the Cochrane library, as well as gray literature. Eligible study designs were observational studies and trials evaluating P. gingivalis and other periodontal pathogens (Aggregatibacter actinomycetemcomitans, Prevotella intermedia, and Tannerella forsythia) for liver phenotypes (Non-Alcoholic Fatty Liver Disease [NAFLD]/Metabolic Dysfunction-Associated Steatotic Liver Disease [MASLD], fibrosis/cirrhosis, acute alcoholic hepatitis [AAH], and Hepatocellular carcinoma [HCC]). Risk of bias was assessed using the Newcastle–Ottawa Scale adapted for cross-sectional studies (NOS-CS) for observational designs and the RoB 2 scale for single randomized controlled trials (RCTs). Due to the heterogeneity of exposures/outcomes, results were summarized narratively. In total, twenty studies (2012–2025; ~34,000 participants) met the inclusion criteria. Population-level evidence was conflicting (no clear association between anti-P. gingivalis serology and NAFLD), while clinical cohorts more frequently linked periodontal exposure, particularly to P. gingivalis, to more advanced liver phenotypes, including fibrosis. Microbiome studies suggested stage-related changes in oral communities rather than the effect of a single pathogen, and direct translocation into ascitic fluid was not observed in decompensated cirrhosis. Signals from interventional and behavioral research (periodontal therapy; toothbrushing frequency) indicate a potential modifiability of liver indices. The overall methodological quality was moderate with substantial heterogeneity, precluding meta-analysis. Current evidence supports a biologically plausible oral–liver axis in which periodontal inflammation, often involving P. gingivalis, is associated with liver damage. Causality has not yet been proven; however, periodontal evaluation and treatment may represent a low-risk option in periodontitis-associated NAFLD. Well-designed, multicenter prospective studies and randomized trials with standardized periodontal and liver measurements are needed.
File in questo prodotto:
File Dimensione Formato  
dentistry-13-00503_251031_143545.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/563727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact