The dependence structure in the tails of bivariate random vectors is studied by means of the copula representation. In particular, asymptotic results for the distribution of a random pair under univariate truncation is proved in the spirit of multivariate extensions of the Pickands-Balkema-de Haan Theorem.

The limiting distribution of a bivariate random vector under univariate truncation

F. Durante
;
C. Ignazzi;
2025-01-01

Abstract

The dependence structure in the tails of bivariate random vectors is studied by means of the copula representation. In particular, asymptotic results for the distribution of a random pair under univariate truncation is proved in the spirit of multivariate extensions of the Pickands-Balkema-de Haan Theorem.
File in questo prodotto:
File Dimensione Formato  
s00362-025-01663-4.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 444.06 kB
Formato Adobe PDF
444.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/562048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact