We consider associative algebras with an action by derivations by some finite dimensional and semisimple Lie algebra. We prove that if a differential variety has almost polynomial growth, then it is generated by one of the algebras UT2(Wλ) or End(Wμ) for some integral dominant weight λ, μ with μ ≠ 0. In the special case L = sl2 we prove that this is a sufficient condition too.

Lie semisimple algebras of derivations and varieties of PI-algebras with almost polynomial growth

Argenti S.
2024-01-01

Abstract

We consider associative algebras with an action by derivations by some finite dimensional and semisimple Lie algebra. We prove that if a differential variety has almost polynomial growth, then it is generated by one of the algebras UT2(Wλ) or End(Wμ) for some integral dominant weight λ, μ with μ ≠ 0. In the special case L = sl2 we prove that this is a sufficient condition too.
File in questo prodotto:
File Dimensione Formato  
Lie semisimple algebras of derivations and varieties of Pi-algebras with almost polynomial growth.pdf

solo utenti autorizzati

Tipologia: Versione editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 235.36 kB
Formato Adobe PDF
235.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/554492
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact