Efficient management of water and fertilizer resources is crucial for achieving sustainability and productivity in agriculture. This paper presents an AI-powered microservices solution that optimizes irrigation and fertigation practices. The proposed system integrates IoT nodes for real-time data collection on environmental conditions, soil moisture levels, and nutrient crop needs. Fertigation and irrigation decision-making are modeled as a data-driven sequential decision problem. At each decision stage, real-time data serve as input to an AI planning model aimed at satisfying nutrient and water demands while minimizing water and fertilizer waste. The system allows supervision by the farmer through a mobile app and a Digital Twin, enabling the design of crop planting layouts and providing detailed information on real-time decisions implemented in the field, as well as water and fertilizer consumption. The proposed solution manages diverse crop species with distinct water and nutrient requirements. Efficient data exchange is facilitated through a push-pull communication paradigm between the IoT nodes and cloud services. This approach offers several benefits, including greater control over data flow, energy savings, and increased flexibility in resource management.
Optimization of irrigation and fertigation in smart agriculture: An IoT-based micro-services framework
Adamo T.;Guerriero E.
2025-01-01
Abstract
Efficient management of water and fertilizer resources is crucial for achieving sustainability and productivity in agriculture. This paper presents an AI-powered microservices solution that optimizes irrigation and fertigation practices. The proposed system integrates IoT nodes for real-time data collection on environmental conditions, soil moisture levels, and nutrient crop needs. Fertigation and irrigation decision-making are modeled as a data-driven sequential decision problem. At each decision stage, real-time data serve as input to an AI planning model aimed at satisfying nutrient and water demands while minimizing water and fertilizer waste. The system allows supervision by the farmer through a mobile app and a Digital Twin, enabling the design of crop planting layouts and providing detailed information on real-time decisions implemented in the field, as well as water and fertilizer consumption. The proposed solution manages diverse crop species with distinct water and nutrient requirements. Efficient data exchange is facilitated through a push-pull communication paradigm between the IoT nodes and cloud services. This approach offers several benefits, including greater control over data flow, energy savings, and increased flexibility in resource management.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2772375525001182-main.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
3.9 MB
Formato
Adobe PDF
|
3.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.