The main aim of this paper is to determine reflections to bijective and non-degenerate solutions of the Yang-Baxter equation, by exploring their connections with their derived solutions. This is motivated by a recent description of left non-degenerate solutions in terms of a family of automorphisms of their associated left rack. In some cases, we show that the study of reflections for bijective and non-degenerate solutions can be reduced to those of derived type. Moreover, we extend some results obtained in the literature for reflections of involutive non-degenerate solutions to more arbitrary solutions. Besides, we provide ways for defining reflections for solutions obtained by employing some classical construction techniques of solutions. Finally, we gather some numerical data on reflections for bijective non-degenerate solutions associated with skew braces of small order.

Reflections to set-theoretic solutions of the Yang-Baxter equation

Albano A.;Mazzotta M.;Stefanelli P.
2025-01-01

Abstract

The main aim of this paper is to determine reflections to bijective and non-degenerate solutions of the Yang-Baxter equation, by exploring their connections with their derived solutions. This is motivated by a recent description of left non-degenerate solutions in terms of a family of automorphisms of their associated left rack. In some cases, we show that the study of reflections for bijective and non-degenerate solutions can be reduced to those of derived type. Moreover, we extend some results obtained in the literature for reflections of involutive non-degenerate solutions to more arbitrary solutions. Besides, we provide ways for defining reflections for solutions obtained by employing some classical construction techniques of solutions. Finally, we gather some numerical data on reflections for bijective non-degenerate solutions associated with skew braces of small order.
File in questo prodotto:
File Dimensione Formato  
AlMaSt25.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 771.79 kB
Formato Adobe PDF
771.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/552647
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact