Recent results concerning the linear dynamics and mean ergodicity of compact operators in Banach spaces, together with additional new results, are employed to investigate various spectral properties of generalized Cesàro operators acting in large classes of classical BK-sequence spaces. Of particular interest is to determine the eigenvalues and the corresponding eigenvectors of such operators and to decide whether (or not) the operators are power bounded, mean ergodic and supercyclic.
Mean ergodic and related properties of generalized Cesàro operators in BK-sequence spaces
Angela A. Albanese
;
2025-01-01
Abstract
Recent results concerning the linear dynamics and mean ergodicity of compact operators in Banach spaces, together with additional new results, are employed to investigate various spectral properties of generalized Cesàro operators acting in large classes of classical BK-sequence spaces. Of particular interest is to determine the eigenvalues and the corresponding eigenvectors of such operators and to decide whether (or not) the operators are power bounded, mean ergodic and supercyclic.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
AlBoRi_MonathMath2025.pdf
solo utenti autorizzati
Descrizione: Articolo
Tipologia:
Versione editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
668.8 kB
Formato
Adobe PDF
|
668.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.