Let C be an irreducible plane curve of PG(2,K) where K is an algebraically closed field of characteristic p≥0. A point Q∈C is an inner Galois point for C if the projection πQ from Q is Galois. Assume that C has two different inner Galois points Q1 and Q2, both simple. Let G1 and G2 be the respective Galois groups. Under the assumption that Gi fixes Qi, for i=1,2, we provide a complete classification of G=〈G1,G2〉 and we exhibit a curve for each such G. Our proof relies on deeper results from group theory.

Curves with more than one inner Galois point

Lia, Stefano;
2021-01-01

Abstract

Let C be an irreducible plane curve of PG(2,K) where K is an algebraically closed field of characteristic p≥0. A point Q∈C is an inner Galois point for C if the projection πQ from Q is Galois. Assume that C has two different inner Galois points Q1 and Q2, both simple. Let G1 and G2 be the respective Galois groups. Under the assumption that Gi fixes Qi, for i=1,2, we provide a complete classification of G=〈G1,G2〉 and we exhibit a curve for each such G. Our proof relies on deeper results from group theory.
File in questo prodotto:
File Dimensione Formato  
LIA-Curves with more than one inner Galois point.pdf

non disponibili

Tipologia: Versione editoriale
Note: Il prodotto è accessibile in full text al link https://www.sciencedirect.com/science/article/pii/S0021869320304580
Licenza: Copyright dell'editore
Dimensione 622.23 kB
Formato Adobe PDF
622.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/543606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact