We prove that operators of the form A=-a(x)(2)Delta (2), with |Da(x)| <= ca(x) (1/2), generate analytic semigroups in L-p(R-N) for 1 < p <= infinity and in C-b(R-N). In particular, we deduce generation results for the operator A := -(1 + |x|(2))(alpha) Delta (2), 0 <= alpha <= 2. Moreover, we characterize the maximal domain of such operators in L-p(R-N) for 1 < p < infinity.

FOURTH-ORDER OPERATORS WITH UNBOUNDED COEFFICIENTS

Spina C.;Tacelli C.
2024-01-01

Abstract

We prove that operators of the form A=-a(x)(2)Delta (2), with |Da(x)| <= ca(x) (1/2), generate analytic semigroups in L-p(R-N) for 1 < p <= infinity and in C-b(R-N). In particular, we deduce generation results for the operator A := -(1 + |x|(2))(alpha) Delta (2), 0 <= alpha <= 2. Moreover, we characterize the maximal domain of such operators in L-p(R-N) for 1 < p < infinity.
File in questo prodotto:
File Dimensione Formato  
2024_Gregorio-Spina-Tacelli.pdf

non disponibili

Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 367.88 kB
Formato Adobe PDF
367.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/543587
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact