Let M be a perfect module of projective dimension 3 over a Gorenstein, local or graded ring R. We denote by F the minimal free resolution of M. Using the generic ring associated to the format of F we define higher structure maps, according to the theory developed by Weyman in [26]. We introduce a generalization of classical linkage for R-module using the Buchsbaum–Rim complex, and study the behavior of structure maps under this Buchsbaum–Rim linkage. In particular, for certain formats we obtain criteria for these R-modules to lie in the Buchsbaum–Rim linkage class of a Buchsbaum–Rim complex of length 3.

Mapping free resolutions of length three II - Module formats

Filippini, Sara Angela;
2025-01-01

Abstract

Let M be a perfect module of projective dimension 3 over a Gorenstein, local or graded ring R. We denote by F the minimal free resolution of M. Using the generic ring associated to the format of F we define higher structure maps, according to the theory developed by Weyman in [26]. We introduce a generalization of classical linkage for R-module using the Buchsbaum–Rim complex, and study the behavior of structure maps under this Buchsbaum–Rim linkage. In particular, for certain formats we obtain criteria for these R-modules to lie in the Buchsbaum–Rim linkage class of a Buchsbaum–Rim complex of length 3.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0024379524003896-main.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 588.91 kB
Formato Adobe PDF
588.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/541466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact