Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of solid tumor that is becoming more common. cis-[PtCl2 (NH3)2] (in short cisplatin or CDDP) has been shown to be effective in treating various cancers, including PDAC. However, the development of resistance to chemotherapy drugs has created a need for the synthesis of new anticancer agents. Platinum-based drugs containing the bidentate ligand phenanthroline have been found to have strong antitumor activity due to their ability to cause DNA damage. In this study, we examined the ability of two Pt (II) cationic complexes, [Pt(eta 1-C2H4OR) (DMSO) (phen)]+ (in short Pt-EtORSOphen; R = Me, 1; Et, 2), to inhibit the growth and spread of BxPC-3 PDAC cells, in comparison to CDDP. The length of the alkyl chain and its associated lipophilic properties did not affect the anticancer effects of complexes 1 and 2 in BxPC-3 cells. However, it did appear to influence the rapid loss of mitochondrial membrane potential (Delta Psi M), suggesting that these complexes could potentially be used as mitochondria-targeted lipophilic cations in anticancer therapy.
Novel Pt (II) Complexes With Anticancer Activity Against Pancreatic Ductal Adenocarcinoma Cells
Rovito, Gianluca;Cossa, Luca G;De Castro, Federica;Vergaro, Viviana;Ali ,Asjad;My, Giulia;Migoni, Danilo;Muscella, Antonella;Marsigliante, Santo
;Benedetti, Michele
;Fanizzi, Francesco Paolo
2024-01-01
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of solid tumor that is becoming more common. cis-[PtCl2 (NH3)2] (in short cisplatin or CDDP) has been shown to be effective in treating various cancers, including PDAC. However, the development of resistance to chemotherapy drugs has created a need for the synthesis of new anticancer agents. Platinum-based drugs containing the bidentate ligand phenanthroline have been found to have strong antitumor activity due to their ability to cause DNA damage. In this study, we examined the ability of two Pt (II) cationic complexes, [Pt(eta 1-C2H4OR) (DMSO) (phen)]+ (in short Pt-EtORSOphen; R = Me, 1; Et, 2), to inhibit the growth and spread of BxPC-3 PDAC cells, in comparison to CDDP. The length of the alkyl chain and its associated lipophilic properties did not affect the anticancer effects of complexes 1 and 2 in BxPC-3 cells. However, it did appear to influence the rapid loss of mitochondrial membrane potential (Delta Psi M), suggesting that these complexes could potentially be used as mitochondria-targeted lipophilic cations in anticancer therapy.File | Dimensione | Formato | |
---|---|---|---|
Bioinorganic Chemistry and Applications - 2025 - Stefàno - Novel Pt II Complexes With Anticancer Activity Against.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
2.59 MB
Formato
Adobe PDF
|
2.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.