Different biomaterials, from synthetic products to autologous or heterologous grafts, have been suggested for the preservation and regeneration of bone. The aim of this study is to evaluate the effectiveness of autologous tooth as a grafting material and examine the properties of this material and its interactions with bone metabolism. PubMed, Scopus, Cochrane Library, and Web of Science were searched to find articles addressing our topic published from 1 January 2012 up to 22 November 2022, and a total of 1516 studies were identified. Eighteen papers in all were considered in this review for qualitative analysis. Demineralized dentin can be used as a graft material, since it shows high cell compatibility and promotes rapid bone regeneration by striking an ideal balance between bone resorption and production; it also has several benefits, such as quick recovery times, high-quality newly formed bone, low costs, no risk of disease transmission, the ability to be performed as an outpatient procedure, and no donor-related postoperative complications. Demineralization is a crucial step in the tooth treatment process, which includes cleaning, grinding, and demineralization. Since the presence of hydroxyapatite crystals prevents the release of growth factors, demineralization is essential for effective regenerative surgery. Even though the relationship between the bone system and dysbiosis has not yet been fully explored, this study highlights an association between bone and gut microbes. The creation of additional scientific studies to build upon and enhance the findings of this study should be a future objective of scientific research.

Autologous Tooth Graft: Innovative Biomaterial for Bone Regeneration. Tooth Transformer® and the Role of Microbiota in Regenerative Dentistry. A Systematic Review

Campanelli M.;Piras F.;Mancini A.;Inchingolo F.;Palermo A.;Scarano A.;
2023-01-01

Abstract

Different biomaterials, from synthetic products to autologous or heterologous grafts, have been suggested for the preservation and regeneration of bone. The aim of this study is to evaluate the effectiveness of autologous tooth as a grafting material and examine the properties of this material and its interactions with bone metabolism. PubMed, Scopus, Cochrane Library, and Web of Science were searched to find articles addressing our topic published from 1 January 2012 up to 22 November 2022, and a total of 1516 studies were identified. Eighteen papers in all were considered in this review for qualitative analysis. Demineralized dentin can be used as a graft material, since it shows high cell compatibility and promotes rapid bone regeneration by striking an ideal balance between bone resorption and production; it also has several benefits, such as quick recovery times, high-quality newly formed bone, low costs, no risk of disease transmission, the ability to be performed as an outpatient procedure, and no donor-related postoperative complications. Demineralization is a crucial step in the tooth treatment process, which includes cleaning, grinding, and demineralization. Since the presence of hydroxyapatite crystals prevents the release of growth factors, demineralization is essential for effective regenerative surgery. Even though the relationship between the bone system and dysbiosis has not yet been fully explored, this study highlights an association between bone and gut microbes. The creation of additional scientific studies to build upon and enhance the findings of this study should be a future objective of scientific research.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/538526
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact