In order to reduce the toxicological impact on healthy cells and to improve the therapeutic response, many drug delivery systems have been fabricated and analysed, involving the use of different natural and synthetic materials at macro-, micro- and nanoscales. Among the natural materials which have demonstrated a huge potential for the development of effective drug delivery systems, silk fibroin has emerged for its excellent biological properties and for the possibility to be processed in a wide range of forms, which can be compliant with multiple active molecules and pharmaceutical ingredients for the treatment of various diseases. This review aims at presenting silk fibroin as an interesting biopolymer for applications in drug delivery systems, exploring the results obtained in recent works in terms of technological progress and effectiveness in vitro and in vivo.
The Emerging Role of Silk Fibroin for the Development of Novel Drug Delivery Systems
Mauro Pollini
Primo
;Federica Paladini
Ultimo
2024-01-01
Abstract
In order to reduce the toxicological impact on healthy cells and to improve the therapeutic response, many drug delivery systems have been fabricated and analysed, involving the use of different natural and synthetic materials at macro-, micro- and nanoscales. Among the natural materials which have demonstrated a huge potential for the development of effective drug delivery systems, silk fibroin has emerged for its excellent biological properties and for the possibility to be processed in a wide range of forms, which can be compliant with multiple active molecules and pharmaceutical ingredients for the treatment of various diseases. This review aims at presenting silk fibroin as an interesting biopolymer for applications in drug delivery systems, exploring the results obtained in recent works in terms of technological progress and effectiveness in vitro and in vivo.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.