Social media occupies an important place in people's daily lives where users share various contents and topics such as thoughts, experiences, events and feelings. The massive use of social media has led to the generation of huge volumes of data. These data constitute a treasure trove, allowing the extraction of high volumes of relevant information particularly by involving deep learning techniques. Based on this context, various research studies have been carried out with the aim of studying the detection of mental disorders, notably depression and anxiety, through the analysis of data extracted from the Twitter platform. However, although these studies were able to achieve very satisfactory results, they nevertheless relied mainly on binary classification models by treating each mental disorder separately. Indeed, it would be better if we managed to develop systems capable of dealing with several mental disorders at the same time. To address this point, we propose a well-defined methodology involving the use of deep learning to develop effective multi-class models for detecting both depression and anxiety disorders through the analysis of tweets. The idea consists in testing a large number of deep learning models ranging from simple to hybrid variants to examine their strengths and weaknesses. Moreover, we involve the grid search technique to help find suitable values for the learning rate hyper-parameter due to its importance in training models. Our work is validated through several experiments and comparisons by considering various datasets and other binary classification models. The aim is to show the effectiveness of both the assumptions used to collect the data and the use of multi-class models rather than binary class models. Overall, the results obtained are satisfactory and very competitive compared to related works.

A Multi-Class Deep Learning Approach for Early Detection of Depressive and Anxiety Disorders Using Twitter Data

Grassi G.
2023-01-01

Abstract

Social media occupies an important place in people's daily lives where users share various contents and topics such as thoughts, experiences, events and feelings. The massive use of social media has led to the generation of huge volumes of data. These data constitute a treasure trove, allowing the extraction of high volumes of relevant information particularly by involving deep learning techniques. Based on this context, various research studies have been carried out with the aim of studying the detection of mental disorders, notably depression and anxiety, through the analysis of data extracted from the Twitter platform. However, although these studies were able to achieve very satisfactory results, they nevertheless relied mainly on binary classification models by treating each mental disorder separately. Indeed, it would be better if we managed to develop systems capable of dealing with several mental disorders at the same time. To address this point, we propose a well-defined methodology involving the use of deep learning to develop effective multi-class models for detecting both depression and anxiety disorders through the analysis of tweets. The idea consists in testing a large number of deep learning models ranging from simple to hybrid variants to examine their strengths and weaknesses. Moreover, we involve the grid search technique to help find suitable values for the learning rate hyper-parameter due to its importance in training models. Our work is validated through several experiments and comparisons by considering various datasets and other binary classification models. The aim is to show the effectiveness of both the assumptions used to collect the data and the use of multi-class models rather than binary class models. Overall, the results obtained are satisfactory and very competitive compared to related works.
File in questo prodotto:
File Dimensione Formato  
algorithms-16-00543.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 5.54 MB
Formato Adobe PDF
5.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/532086
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact