One of the main issues in epoxy-based composite manufacturing is the formation of porosity derived from moisture absorption during storage and layup due to the high hydrophilicity of epoxy matrices. During the curing process, the presence of moisture and other volatile compounds can initiate the nucleation and growth of voids. In this study, the effect of both the initial water content absorbed in the uncured resin and the pressure on the porosity development in an epoxy resin was investigated. In particular, Kardos' and Ledru's models, aimed at predicting void formation in polymers, were applied to study the effect of different hydrostatic pressures in an epoxy resin during curing up to the gel point, after conditioning it at two different relative humidity levels, 50% and 95%. Subsequently, the porosity of the cured resin samples was quantified through density measurements. Comparative analysis of the microscopy images of cured samples and the predictions of both models revealed an overestimation of the final void sizes by both models, with the Kardos' model exhibiting a higher deviation. Additionally, a finite element model was employed to investigate the conditions leading to void formation, aiming to understand the factors influencing the porosity development and properly set the process parameters during composite manufacturing.

The effect of absorbed moisture and resin pressure on porosity in autoclave cured epoxy resin

Andrea Dei Sommi;Francesca Lionetto
;
Alfonso Maffezzoli
2024-01-01

Abstract

One of the main issues in epoxy-based composite manufacturing is the formation of porosity derived from moisture absorption during storage and layup due to the high hydrophilicity of epoxy matrices. During the curing process, the presence of moisture and other volatile compounds can initiate the nucleation and growth of voids. In this study, the effect of both the initial water content absorbed in the uncured resin and the pressure on the porosity development in an epoxy resin was investigated. In particular, Kardos' and Ledru's models, aimed at predicting void formation in polymers, were applied to study the effect of different hydrostatic pressures in an epoxy resin during curing up to the gel point, after conditioning it at two different relative humidity levels, 50% and 95%. Subsequently, the porosity of the cured resin samples was quantified through density measurements. Comparative analysis of the microscopy images of cured samples and the predictions of both models revealed an overestimation of the final void sizes by both models, with the Kardos' model exhibiting a higher deviation. Additionally, a finite element model was employed to investigate the conditions leading to void formation, aiming to understand the factors influencing the porosity development and properly set the process parameters during composite manufacturing.
File in questo prodotto:
File Dimensione Formato  
A84_Pol Composites_24 Moisture.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/531447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact