We show how some of the refined tropical counts of Block and Göttsche emerge from the wall-crossing formalism. This leads naturally to a definition of a class of putative q-deformed Gromov-Witten invariants. We prove that this coincides with another natural q-deformation, provided by a result of Reineke and Weist in the context of quiver representations, when the latter is well defined.
Block-Göttsche invariants from wall-crossing
Filippini S. A.;
2015-01-01
Abstract
We show how some of the refined tropical counts of Block and Göttsche emerge from the wall-crossing formalism. This leads naturally to a definition of a class of putative q-deformed Gromov-Witten invariants. We prove that this coincides with another natural q-deformation, provided by a result of Reineke and Weist in the context of quiver representations, when the latter is well defined.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
blockgottsche_invariants_from_wallcrossing.pdf
non disponibili
Tipologia:
Versione editoriale
Note: Il prodotto è accessibile in full text sul sito editoriale (https://www.cambridge.org/core/journals/compositio-mathematica/article/blockgottsche-invariants-from-wallcrossing/0ACD2CED4875B38DD225F58C7DF56E0A)
Licenza:
Copyright dell'editore
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.