Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease targeting the brain and spinal cord. Non-neuronal cells, including macrophages, may contribute to the disruption of motor neurons (MNs), neuromuscular junction dismantling and clinical signs of ALS. Understanding the modality and the effect of MNs–macrophage communication is pivotal. Here, we focus on extracellular vesicle (EVS)-mediated communication and, in particular, we analyze the response of macrophages. NSC-34 cells transfected with mutant SOD1 (G93A, A4V, G85R, G37R) and differentiated towards MN-like cells, and Raw 264.7 macrophages are the cellular models of the study. mSOD1 NSC-34 cells release a high number of vesicles, both large-lEVs (300 nm diameter) and small-sEVs (90 nm diameter), containing inflammation-modulating molecules, and are efficiently taken up by macrophages. RT-PCR analysis of inflammation mediators demonstrated that the conditioned medium of mSOD1 NSC-34 cells polarizes Raw 264.7 macrophages towards both pro-inflammatory and anti-inflammatory phenotypes. sEVs act on macrophages in a time-dependent manner: an anti-inflammatory response mediated by TGFβ firstly starts (12 h); successively, the response shifts towards a pro-inflammation IL-1β-mediated (48 h). The response of macrophages is strictly dependent on the SOD1 mutation type. The results suggest that EVs impact physiological and behavioral macrophage processes and are of potential relevance to MN degeneration.

Extracellular Vesicles from NSC-34 MN-like Cells Transfected with Mutant SOD1 Modulate Inflammatory Status of Raw 264.7 Macrophages

Carata, Elisabetta
Co-primo
;
Muci, Marco
Co-primo
;
Mariano, Stefania;Di Giulio, Simona;Panzarini, Elisa
2024-01-01

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease targeting the brain and spinal cord. Non-neuronal cells, including macrophages, may contribute to the disruption of motor neurons (MNs), neuromuscular junction dismantling and clinical signs of ALS. Understanding the modality and the effect of MNs–macrophage communication is pivotal. Here, we focus on extracellular vesicle (EVS)-mediated communication and, in particular, we analyze the response of macrophages. NSC-34 cells transfected with mutant SOD1 (G93A, A4V, G85R, G37R) and differentiated towards MN-like cells, and Raw 264.7 macrophages are the cellular models of the study. mSOD1 NSC-34 cells release a high number of vesicles, both large-lEVs (300 nm diameter) and small-sEVs (90 nm diameter), containing inflammation-modulating molecules, and are efficiently taken up by macrophages. RT-PCR analysis of inflammation mediators demonstrated that the conditioned medium of mSOD1 NSC-34 cells polarizes Raw 264.7 macrophages towards both pro-inflammatory and anti-inflammatory phenotypes. sEVs act on macrophages in a time-dependent manner: an anti-inflammatory response mediated by TGFβ firstly starts (12 h); successively, the response shifts towards a pro-inflammation IL-1β-mediated (48 h). The response of macrophages is strictly dependent on the SOD1 mutation type. The results suggest that EVs impact physiological and behavioral macrophage processes and are of potential relevance to MN degeneration.
File in questo prodotto:
File Dimensione Formato  
genes-15-00735.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 4.74 MB
Formato Adobe PDF
4.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/522206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact