Tidally-influenced subterranean settings represent natural geomicrobiological laboratories, relatively unexplored, that facilitate the investigation of new biomineralization processes. The unusual water chemistry of Zinzulùsa Cave and its oligotrophic and aphotic conditions have allowed the development of a unique ecosystem in which complex bacterial activities induce rare biomineralization processes. A diversified microbial community develops on centimeter-thick crusts that form in the submerged part of the cave. The crusts are formed of Caphosphate minerals, mostly carbonate-fluoroapatite (francolite), covered by a black crust, few microns in thickness, composed of ferromanganiferous oxides (hematite and vernadite). Diffuse coccoidal and filamentous bacteria and amorphous organic matter are mixed with the minerals. The micromorphologies and comparative 16S rRNA gene-based metabarcoding analyses identify a “core microbiota” also common to other natural environments characterized by Fe–Mn and Ca-phosphate mineralization. The microbiota is characterized by nitrifying, sulfide/sulfur/thiosulfate-oxidizing and sulfate/thiosulfate/sulfur-reducing bacteria. In addition, manganese-oxidizing bacteria include the recently described “Ca. Manganitrophus noduliformans” and an abundance of bacteria belonging to the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum, as well as Haliangiales (fruiting body-forming bacteria) and Hyphomicrobiales (stalked and budding bacteria) that are known to produce extracellular polymers that trap iron and manganese oxides. 16S rRNA gene metabarcoding analysis showed the presence of bacteria able to utilize many organic P substrates, including Ramlibacter, and SEM images revealed traces of fossilized microorganisms resembling “cable bacteria”, which may play a role in Ca-phosphate biomineralization. Overall, the data indicate biomineralization processes induced by microbial metabolic activities for both ferromanganiferous oxide and francolite components of these crusts.

Microbial consortium involved in ferromanganese and francolite biomineralization in an anchialine environment (Zinzulùsa Cave, Castro, Italy)

Calcagnile, Matteo;Talà, Adelfia;Tredici, Salvatore Maurizio;Belmonte, Genuario;Alifano, Pietro
2024-01-01

Abstract

Tidally-influenced subterranean settings represent natural geomicrobiological laboratories, relatively unexplored, that facilitate the investigation of new biomineralization processes. The unusual water chemistry of Zinzulùsa Cave and its oligotrophic and aphotic conditions have allowed the development of a unique ecosystem in which complex bacterial activities induce rare biomineralization processes. A diversified microbial community develops on centimeter-thick crusts that form in the submerged part of the cave. The crusts are formed of Caphosphate minerals, mostly carbonate-fluoroapatite (francolite), covered by a black crust, few microns in thickness, composed of ferromanganiferous oxides (hematite and vernadite). Diffuse coccoidal and filamentous bacteria and amorphous organic matter are mixed with the minerals. The micromorphologies and comparative 16S rRNA gene-based metabarcoding analyses identify a “core microbiota” also common to other natural environments characterized by Fe–Mn and Ca-phosphate mineralization. The microbiota is characterized by nitrifying, sulfide/sulfur/thiosulfate-oxidizing and sulfate/thiosulfate/sulfur-reducing bacteria. In addition, manganese-oxidizing bacteria include the recently described “Ca. Manganitrophus noduliformans” and an abundance of bacteria belonging to the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum, as well as Haliangiales (fruiting body-forming bacteria) and Hyphomicrobiales (stalked and budding bacteria) that are known to produce extracellular polymers that trap iron and manganese oxides. 16S rRNA gene metabarcoding analysis showed the presence of bacteria able to utilize many organic P substrates, including Ramlibacter, and SEM images revealed traces of fossilized microorganisms resembling “cable bacteria”, which may play a role in Ca-phosphate biomineralization. Overall, the data indicate biomineralization processes induced by microbial metabolic activities for both ferromanganiferous oxide and francolite components of these crusts.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/520906
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact