Miniaturization requests and progress in nanofabrication are prompting worldwide interest in nanophosphors as white-emission mercury-free lighting sources. By comparison with their bulk counterparts, nanophosphors exhibit reduced concentration quenching effects and a great potential to enhance luminescence effciency and tunability. In this paper, the physics of the nanophoshors is overviewed with a focus on the impact of spatial confinement and surface-to-volume ratio on the luminescence issue, as well as rare earth-activated multicolor emission for white light (WL) output. In this respect, the prominently practiced strategies to achieve WL emission are single nanophosphors directly yielding WL by means of co-doping and superposition of the individual red, green, and blue emissions from different nanophosphors. Recently, a new class of effcient broadband WL emitting nanophosphors has been proposed, i.e., nominally un-doped rare earth free oxide (yttrium oxide, Y2O3) nanopowders and Cr transition metal-doped garnet nanocrystals. In regard to this unconventional WL emission, the main points are: it is strictly a nanoscale phenomenon, the presence of an emitting center may favor WL emission without being necessary for observing it, and, its inherent origin is still unknown. A comparison between such an unconventional WL emission and the existing literature is presented to point out its novelty and superior lighting performances.
Nanophosphors-based white light sources
Cesaria M.
;
2019-01-01
Abstract
Miniaturization requests and progress in nanofabrication are prompting worldwide interest in nanophosphors as white-emission mercury-free lighting sources. By comparison with their bulk counterparts, nanophosphors exhibit reduced concentration quenching effects and a great potential to enhance luminescence effciency and tunability. In this paper, the physics of the nanophoshors is overviewed with a focus on the impact of spatial confinement and surface-to-volume ratio on the luminescence issue, as well as rare earth-activated multicolor emission for white light (WL) output. In this respect, the prominently practiced strategies to achieve WL emission are single nanophosphors directly yielding WL by means of co-doping and superposition of the individual red, green, and blue emissions from different nanophosphors. Recently, a new class of effcient broadband WL emitting nanophosphors has been proposed, i.e., nominally un-doped rare earth free oxide (yttrium oxide, Y2O3) nanopowders and Cr transition metal-doped garnet nanocrystals. In regard to this unconventional WL emission, the main points are: it is strictly a nanoscale phenomenon, the presence of an emitting center may favor WL emission without being necessary for observing it, and, its inherent origin is still unknown. A comparison between such an unconventional WL emission and the existing literature is presented to point out its novelty and superior lighting performances.File | Dimensione | Formato | |
---|---|---|---|
Nanophosphors-Based_White_Light_Sources (2019).pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
4.6 MB
Formato
Adobe PDF
|
4.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.