The clustering of time series with geo-referenced data requires a suitable dissimilarity matrix interpreting the comovements of the time series and taking into account the spatial constraints. In this paper, we propose a new way to compute the dissimilarity matrix, merging both types of information, which leverages on the Wasserstein distance. We then make a quasi-Gaussian assumption that yields more convenient formulas in terms of the joint correlation matrix. The method is illustrated in a case study involving climatological data.

Wasserstein Dissimilarity for Copula-Based Clustering of Time Series with Spatial Information

Benevento, Alessia;Durante, Fabrizio
2024-01-01

Abstract

The clustering of time series with geo-referenced data requires a suitable dissimilarity matrix interpreting the comovements of the time series and taking into account the spatial constraints. In this paper, we propose a new way to compute the dissimilarity matrix, merging both types of information, which leverages on the Wasserstein distance. We then make a quasi-Gaussian assumption that yields more convenient formulas in terms of the joint correlation matrix. The method is illustrated in a case study involving climatological data.
File in questo prodotto:
File Dimensione Formato  
24_Benevento_Durante_MDPI.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 651.46 kB
Formato Adobe PDF
651.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/511287
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact