Let FI (X, K) be the finitary incidence algebra of a poset X over a field K. In this short note we establish when FI(X, K) satisfies a polynomial identity and when its group of units U(FI(X,K)) satisfies a group identity. The Lie derived length of FI(X, K) and the derived length of U(FI(X,K)) are also determined.
Identities and derived lengths of finitary incidence algebras and their group of units
Salvatore Siciliano
2024-01-01
Abstract
Let FI (X, K) be the finitary incidence algebra of a poset X over a field K. In this short note we establish when FI(X, K) satisfies a polynomial identity and when its group of units U(FI(X,K)) satisfies a group identity. The Lie derived length of FI(X, K) and the derived length of U(FI(X,K)) are also determined.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
identities.pdf
non disponibili
Tipologia:
Versione editoriale
Licenza:
Copyright dell'editore
Dimensione
909.79 kB
Formato
Adobe PDF
|
909.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.