We prove maximum and comparison principles for weak distributional solutions of quasilinear, possibly singular or degenerate, elliptic differential inequalities in divergence form on complete Riemannian manifolds. A new definition of ellipticity for nonlinear operators on Riemannian manifolds is introduced, covering the standard important examples. As an application, uniqueness results for some related boundary value problems are presented.

Quasilinear elliptic inequalities on complete Riemannian manifolds

Antonini P.;
2007-01-01

Abstract

We prove maximum and comparison principles for weak distributional solutions of quasilinear, possibly singular or degenerate, elliptic differential inequalities in divergence form on complete Riemannian manifolds. A new definition of ellipticity for nonlinear operators on Riemannian manifolds is introduced, covering the standard important examples. As an application, uniqueness results for some related boundary value problems are presented.
File in questo prodotto:
File Dimensione Formato  
JMPA.pdf

non disponibili

Tipologia: Versione editoriale
Note: Disponibile in full text al link: https://www.sciencedirect.com/science/article/pii/S0021782407000475
Licenza: Copyright dell'editore
Dimensione 240.91 kB
Formato Adobe PDF
240.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/504131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact