Modeling covariance functions, with values on a complex domain, is essential for geostatistical interpolation or stochastic simulation of complex-valued random fields in space or space-time. However, little has been done for complex spatio-temporal modeling. For this aim, the construction of new classes of spatio-temporal complex-valued covariance models, based on convolution, is provided. Indeed, starting from the Lajaunie and Bejaoui models extended to a space-time domain, generalized families of complex models are obtained through the integration with respect to a positive measure. A procedure for fitting the two parts of the spatio-temporal complex models and for defining the density function considered for the integration is also illustrated. The computational details of this procedure are discussed through a case study on a spatio-temporal dataset of sea currents and the performance of these classes of models is assessed.
Spatio-temporal generalized complex covariance models based on convolution
De Iaco, Sandra
2023-01-01
Abstract
Modeling covariance functions, with values on a complex domain, is essential for geostatistical interpolation or stochastic simulation of complex-valued random fields in space or space-time. However, little has been done for complex spatio-temporal modeling. For this aim, the construction of new classes of spatio-temporal complex-valued covariance models, based on convolution, is provided. Indeed, starting from the Lajaunie and Bejaoui models extended to a space-time domain, generalized families of complex models are obtained through the integration with respect to a positive measure. A procedure for fitting the two parts of the spatio-temporal complex models and for defining the density function considered for the integration is also illustrated. The computational details of this procedure are discussed through a case study on a spatio-temporal dataset of sea currents and the performance of these classes of models is assessed.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0167947323000208-mainCSDA_STconv.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.