Self-healing polymers and nanocomposites form an important class of responsive materials. These materials have the capability to reversibly heal their damage. For aerospace applications, thermosets and thermoplastic polymers have been reinforced with nanocarbon nanoparticles for self-healing of structural damage. This review comprehends the use of self-healing nanocomposites in the aerospace sector. The self-healing behavior of the nanocomposites depends on factors such as microphase separation, matrix–nanofiller interactions and inter-diffusion of polymer–nanofiller. Moreover, self-healing can be achieved through healing agents such as nanocapsules and nanocarbon nanoparticles. The mechanism of self-healing has been found to operate via physical or chemical interactions. Self-healing nanocomposites have been used to design structural components, panels, laminates, membranes, coatings, etc., to recover the damage to space materials. Future research must emphasize the design of new high-performance self-healing polymeric nanocomposites for aerospace structures.

Self-Healing Nanocomposites—Advancements and Aerospace Applications

Bocchetta P.
2023-01-01

Abstract

Self-healing polymers and nanocomposites form an important class of responsive materials. These materials have the capability to reversibly heal their damage. For aerospace applications, thermosets and thermoplastic polymers have been reinforced with nanocarbon nanoparticles for self-healing of structural damage. This review comprehends the use of self-healing nanocomposites in the aerospace sector. The self-healing behavior of the nanocomposites depends on factors such as microphase separation, matrix–nanofiller interactions and inter-diffusion of polymer–nanofiller. Moreover, self-healing can be achieved through healing agents such as nanocapsules and nanocarbon nanoparticles. The mechanism of self-healing has been found to operate via physical or chemical interactions. Self-healing nanocomposites have been used to design structural components, panels, laminates, membranes, coatings, etc., to recover the damage to space materials. Future research must emphasize the design of new high-performance self-healing polymeric nanocomposites for aerospace structures.
File in questo prodotto:
File Dimensione Formato  
Self-Healing Nanocomposites 23.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 9.88 MB
Formato Adobe PDF
9.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/492707
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact