Over the last decades, great effort has gone into developing new biosensor technologies for applications in different fields such as disease diagnosis and detection of pollutants in water and food. Global developments in robotic, IoT technologies and in healthcare sensors require new flexible sensor technologies that are low cost and built from sustainable and reusable or recyclable materials. One of the most promising technologies is based on the development of surface acoustic wave (SAW) flexible biosensors, which are highly reproducible, reliable and wirelessly controllable. This work presents for the first time a novel aluminum nitride (AlN)-based conformable SAW immunosensor fabricated on recyclable polyethylene naphthalate. We apply it to the detection of E.Coli using a faster and innovative functionalization method that exploit Protein-A/antibody affinity. A higher sensitivity (Limit of detection-LoD, 6.54*105 CFU/ml) of the Lamb wave traveling on the polymeric device has been obtained in comparison with SAWs traveling on AlN on silicon substrate (LoD, 1.04*106 CFU/ml). Implementation of a finite element method allowed for the estimation of the single E.Coli mass of approximately 9*10−13 g. This work demonstrates the high biosensing potential of flexible polymeric SAW devices for bacteria contamination control in food chain, water and smart packaging.

Conformable surface acoustic wave biosensor for E-coli fabricated on PEN plastic film

Lamanna L.
Primo
;
De Vittorio M.
2020-01-01

Abstract

Over the last decades, great effort has gone into developing new biosensor technologies for applications in different fields such as disease diagnosis and detection of pollutants in water and food. Global developments in robotic, IoT technologies and in healthcare sensors require new flexible sensor technologies that are low cost and built from sustainable and reusable or recyclable materials. One of the most promising technologies is based on the development of surface acoustic wave (SAW) flexible biosensors, which are highly reproducible, reliable and wirelessly controllable. This work presents for the first time a novel aluminum nitride (AlN)-based conformable SAW immunosensor fabricated on recyclable polyethylene naphthalate. We apply it to the detection of E.Coli using a faster and innovative functionalization method that exploit Protein-A/antibody affinity. A higher sensitivity (Limit of detection-LoD, 6.54*105 CFU/ml) of the Lamb wave traveling on the polymeric device has been obtained in comparison with SAWs traveling on AlN on silicon substrate (LoD, 1.04*106 CFU/ml). Implementation of a finite element method allowed for the estimation of the single E.Coli mass of approximately 9*10−13 g. This work demonstrates the high biosensing potential of flexible polymeric SAW devices for bacteria contamination control in food chain, water and smart packaging.
File in questo prodotto:
File Dimensione Formato  
Conformable surface acoustic wave biosensor for E-coli fabricated on PEN plastic film.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Versione editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/488590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 64
social impact