ZnO nanoparticles were synthesized using lemon juice and zinc nitrate (1:1) through the green method. The structure of the biosynthesized ZnO nanoparticles was analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The morphology and the size of ZnO nanoparticles were elucidated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The powder was highly dispersed and irregularly shaped and the size of the nanoparticles ranged from 28 to 270 nm, depending on the shape of the particles. Thermal conductivity of the biosynthesized ZnO PG/W mixture 40:60 (v/v) nanofluids was measured within the temperature range of 20–70 ◦C. Experimental results revealed a linear increase in thermal conductivity with the rise of temperature and volume fraction. The enhancement of this parameter with temperature was probably due to the different shapes of the former agglomerates. They were broken by the thermal energy in aggregates of different forms. A correlation of these structures with temperature was established. Finally, an empirical model was developed for predicting thermal conductivity with particle volume fraction and temperature.

Green Synthesis, Characterization, and Empirical Thermal Conductivity Assessment of ZnO Nanofluids for High-Efficiency Heat-Transfer Applications

Meriem Jebali
Co-primo
;
Gianpiero Colangelo
Co-primo
;
2023-01-01

Abstract

ZnO nanoparticles were synthesized using lemon juice and zinc nitrate (1:1) through the green method. The structure of the biosynthesized ZnO nanoparticles was analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The morphology and the size of ZnO nanoparticles were elucidated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The powder was highly dispersed and irregularly shaped and the size of the nanoparticles ranged from 28 to 270 nm, depending on the shape of the particles. Thermal conductivity of the biosynthesized ZnO PG/W mixture 40:60 (v/v) nanofluids was measured within the temperature range of 20–70 ◦C. Experimental results revealed a linear increase in thermal conductivity with the rise of temperature and volume fraction. The enhancement of this parameter with temperature was probably due to the different shapes of the former agglomerates. They were broken by the thermal energy in aggregates of different forms. A correlation of these structures with temperature was established. Finally, an empirical model was developed for predicting thermal conductivity with particle volume fraction and temperature.
File in questo prodotto:
File Dimensione Formato  
materials-16-01542-v2.pdf

accesso aperto

Descrizione: Paper
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 5.38 MB
Formato Adobe PDF
5.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/483326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact