Vibrations of thin and thick beams containing internal complexities are analyzed through generalized bases made of global piecewise-smooth functions (GPSFs). Such functional bases allow us to globally analyze multiple domains as if these latter were only one, such that a unified formulation can be used for different mechanical systems. Such bases were initially introduced to model a specific part of stress and displacement components through the thickness of multi-layered plates; subsequent extensions were introduced in the literature to allow the modeling of thin-walled beams and plates. However, in these latter cases, certain analytical difficulties were experienced when inner boundary conditions needed to be englobed into the GPSFs; in this work, such mentioned difficulties are successfully overcome through certain affine transformations which allow the analyses of vibrating complex beam systems through a straightforward analytical procedure. The complex mechanical components under investigation are Euler and/or Timoshenko models containing inner complexities (stepped beams, concentrated mass or stiffness, internal constraints, etc.). The ability of the models herein analyzed is shown through the comparison of the resulting solutions to exact counterparts, if existing, or to finite elements solutions.

Vibration of Complex Euler-Bernoulli and Timoshenko-Ehrenfest Beams Through Affine GPSFs

Messina A.
2022-01-01

Abstract

Vibrations of thin and thick beams containing internal complexities are analyzed through generalized bases made of global piecewise-smooth functions (GPSFs). Such functional bases allow us to globally analyze multiple domains as if these latter were only one, such that a unified formulation can be used for different mechanical systems. Such bases were initially introduced to model a specific part of stress and displacement components through the thickness of multi-layered plates; subsequent extensions were introduced in the literature to allow the modeling of thin-walled beams and plates. However, in these latter cases, certain analytical difficulties were experienced when inner boundary conditions needed to be englobed into the GPSFs; in this work, such mentioned difficulties are successfully overcome through certain affine transformations which allow the analyses of vibrating complex beam systems through a straightforward analytical procedure. The complex mechanical components under investigation are Euler and/or Timoshenko models containing inner complexities (stepped beams, concentrated mass or stiffness, internal constraints, etc.). The ability of the models herein analyzed is shown through the comparison of the resulting solutions to exact counterparts, if existing, or to finite elements solutions.
File in questo prodotto:
File Dimensione Formato  
2022 MESSINA JVA-ASME.pdf

solo utenti autorizzati

Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 545.35 kB
Formato Adobe PDF
545.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/483144
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact