We study elliptic and parabolic problems governed by the singular elliptic operators ( I L=y alpha 1Ax+y alpha 2Dyy+ycDy-b, alpha 1, alpha 2 is an element of R y2 in the half-space RN+1 + = {(x, y) : x is an element of RN, y > 0}. We prove elliptic and parabolic Lp-estimates and solvability for the associated problems. In the language of semigroup theory, we prove that L generates an analytic semigroup, characterize its domain as a weighted Sobolev space and show that it has maximal regularity.

A unified approach to degenerate problems in the half-space

G. Metafune;L. Negro;C. Spina
2023-01-01

Abstract

We study elliptic and parabolic problems governed by the singular elliptic operators ( I L=y alpha 1Ax+y alpha 2Dyy+ycDy-b, alpha 1, alpha 2 is an element of R y2 in the half-space RN+1 + = {(x, y) : x is an element of RN, y > 0}. We prove elliptic and parabolic Lp-estimates and solvability for the associated problems. In the language of semigroup theory, we prove that L generates an analytic semigroup, characterize its domain as a weighted Sobolev space and show that it has maximal regularity.
File in questo prodotto:
File Dimensione Formato  
A Unified approach.pdf

solo utenti autorizzati

Tipologia: Versione editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 500.18 kB
Formato Adobe PDF
500.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/482248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact