Nanotechnology is a burgeoning revolutionary technology in the 21st century. Climate emergencies caused by natural or anthropogenic activities have tragically consequential repercussions on agricultural output worldwide. Modern cropping systems profoundly rely on synthetic fertilizers to deliver necessary nutrients, yet their prolonged and persistent administration is hazardous to the environment, soil fertility, and nutritional dynamics of the rhizospheric microbiome. By addressing the drawback of physico-chemically synthesized nano-dimensioned fertilizer, this review emphasizes on integrating nanoparticles and biofertilizers conjointly as nano-biofertilizers (NBF) which can safeguard global food security, in light of the population surge. Inoculation with nanoparticles and biofertilizers strengthens plant growth and stress tolerance. However, combined together (NBF), they have emerged as a more economically and environmentally sustainable, highly versatile, and long-lasting agriculture tool. Microbe-based green synthesis using the encapsulation of inorganic nanoparticles of Si, Zn, Cu, Fe, Ni, Ti, and Ag as well as organic materials, including chitosan, cellulose, and starch, to formulate NBFs can eliminate the constraints of conventional fertilizer contamination. The application of NBFs is in its infancy in agriculture, yet it has promising potential for transforming traditional farming techniques into smart agriculture, compared to any of the existing strategies. From this perspective, this review is an attempt to provide a comprehensive understanding of the formulations, fabrication, and characterization of NBFs while unraveling the underlying mechanisms of plant-NBF interactions along with their contribution to climate change-induced biotic and abiotic stress tolerance. We substantially summarize the latest advancements of field applications of NBFs for precision farming. Moreover, we critically revised their applications in agro-ecosystems according to the current literature, while also discussing the bottlenecks and future trends for developing potent NBFs.

Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations

Cardinale, Massimiliano
2023-01-01

Abstract

Nanotechnology is a burgeoning revolutionary technology in the 21st century. Climate emergencies caused by natural or anthropogenic activities have tragically consequential repercussions on agricultural output worldwide. Modern cropping systems profoundly rely on synthetic fertilizers to deliver necessary nutrients, yet their prolonged and persistent administration is hazardous to the environment, soil fertility, and nutritional dynamics of the rhizospheric microbiome. By addressing the drawback of physico-chemically synthesized nano-dimensioned fertilizer, this review emphasizes on integrating nanoparticles and biofertilizers conjointly as nano-biofertilizers (NBF) which can safeguard global food security, in light of the population surge. Inoculation with nanoparticles and biofertilizers strengthens plant growth and stress tolerance. However, combined together (NBF), they have emerged as a more economically and environmentally sustainable, highly versatile, and long-lasting agriculture tool. Microbe-based green synthesis using the encapsulation of inorganic nanoparticles of Si, Zn, Cu, Fe, Ni, Ti, and Ag as well as organic materials, including chitosan, cellulose, and starch, to formulate NBFs can eliminate the constraints of conventional fertilizer contamination. The application of NBFs is in its infancy in agriculture, yet it has promising potential for transforming traditional farming techniques into smart agriculture, compared to any of the existing strategies. From this perspective, this review is an attempt to provide a comprehensive understanding of the formulations, fabrication, and characterization of NBFs while unraveling the underlying mechanisms of plant-NBF interactions along with their contribution to climate change-induced biotic and abiotic stress tolerance. We substantially summarize the latest advancements of field applications of NBFs for precision farming. Moreover, we critically revised their applications in agro-ecosystems according to the current literature, while also discussing the bottlenecks and future trends for developing potent NBFs.
File in questo prodotto:
File Dimensione Formato  
Sharma et al., 2023.pdf

solo utenti autorizzati

Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 3.51 MB
Formato Adobe PDF
3.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/477685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 27
social impact