Fast saccades are rapid automatic oculomotor responses to salient and ecologically important visual stimuli such as animals and faces. Discriminating the number of friends, foe, or prey may also have an evolutionary advantage. In this study, participants were asked to saccade rapidly towards the more numerous of two arrays. Participants could discriminate numerosities with high accuracy and great speed, as fast as 190 ms. Intermediate numerosities were more likely to elicit fast saccades than very low or very high numerosities. Reaction-times for vocal responses (collected in a separate experiment) were slower, did not depend on numerical range, and correlated only with the slow not the fast saccades, pointing to different systems. The short saccadic reaction-times we observe are surprising given that discrimination using numerosity estimation is thought to require a relatively complex neural circuit, with several relays of information through the parietal and prefrontal cortex. Our results suggest that fast numerosity-driven saccades may be generated on a single feed-forward pass of information recruiting a primitive system that cuts through the cortical hierarchy and rapidly transforms the numerosity information into a saccade command.

Fast saccadic eye-movements in humans suggest that numerosity perception is automatic and direct: Numerosity drives fast saccades

Burr, David C.;Turi, Marco;
2020-01-01

Abstract

Fast saccades are rapid automatic oculomotor responses to salient and ecologically important visual stimuli such as animals and faces. Discriminating the number of friends, foe, or prey may also have an evolutionary advantage. In this study, participants were asked to saccade rapidly towards the more numerous of two arrays. Participants could discriminate numerosities with high accuracy and great speed, as fast as 190 ms. Intermediate numerosities were more likely to elicit fast saccades than very low or very high numerosities. Reaction-times for vocal responses (collected in a separate experiment) were slower, did not depend on numerical range, and correlated only with the slow not the fast saccades, pointing to different systems. The short saccadic reaction-times we observe are surprising given that discrimination using numerosity estimation is thought to require a relatively complex neural circuit, with several relays of information through the parietal and prefrontal cortex. Our results suggest that fast numerosity-driven saccades may be generated on a single feed-forward pass of information recruiting a primitive system that cuts through the cortical hierarchy and rapidly transforms the numerosity information into a saccade command.
File in questo prodotto:
File Dimensione Formato  
21_2020_castaldi et al..pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/476591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact