This work deals with the analysis in the frequency domain of the temperature signal and mechanical energy rate of C45 steel under two different fatigue stepwise loading series at stress ratios of 0.1 and −1. It was first investigated the energy distribution among the harmonic components of the signals to understand possible variations caused by a different stress ratio. In addition, the second amplitude harmonic (SAH) of heat dissipated and mechanical energy rates have been considered in the analysis, and their relationship was investigated. It has been shown as it depends only on the material, and hence, it is valid whatever the kind of the test is without any assumption on the energy supplied to the material or material hysteresis loop stabilization. The adopted approach allows the analysis of intrinsic dissipations by means of rapid, full-field, and contactless techniques without any specific requirement on loading condition or temperature signal stabilization.

On the relationship between mechanical energy rate and heat dissipated rate during fatigue for a C45 steel depending on stress ratio

Rosa De Finis
Primo
;
2021-01-01

Abstract

This work deals with the analysis in the frequency domain of the temperature signal and mechanical energy rate of C45 steel under two different fatigue stepwise loading series at stress ratios of 0.1 and −1. It was first investigated the energy distribution among the harmonic components of the signals to understand possible variations caused by a different stress ratio. In addition, the second amplitude harmonic (SAH) of heat dissipated and mechanical energy rates have been considered in the analysis, and their relationship was investigated. It has been shown as it depends only on the material, and hence, it is valid whatever the kind of the test is without any assumption on the energy supplied to the material or material hysteresis loop stabilization. The adopted approach allows the analysis of intrinsic dissipations by means of rapid, full-field, and contactless techniques without any specific requirement on loading condition or temperature signal stabilization.
File in questo prodotto:
File Dimensione Formato  
FFMES_2021.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Versione editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.56 MB
Formato Adobe PDF
4.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/476387
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact