The simulation of turbulent combustion phenomena is still an open problem in modern fluid dynamics. Considering the economical importance of hydrocarbon combustion in energy production processes, it is evident the need of an accurate tool with a relatively low computational cost for the prediction of this kind of reacting flows. In the present work, a comparative study is carried out among large eddy simulations, performed with various grid resolutions, a Reynolds averaged Navier-Stokes simulation, and experimental data concerning the well-known Sandia D flame test case. In all the simulations, a flamelet progress variable model has been employed using various hypotheses for the joint probability density function closure. The filtered approach proved to be more accurate than the averaged one, even for the coarser grid used in this work. In fact both approaches have shown poorly accurate predictions in the first part of the combustion chamber, but only by the large eddy simulation one is capable to recover the inlet discrepancies with respect to the experimental data going along the streamwise direction.

LES of the Sandia Flame D Using an FPV Combustion Model

Di Renzo M.
Primo
;
Pascazio G.
2015-01-01

Abstract

The simulation of turbulent combustion phenomena is still an open problem in modern fluid dynamics. Considering the economical importance of hydrocarbon combustion in energy production processes, it is evident the need of an accurate tool with a relatively low computational cost for the prediction of this kind of reacting flows. In the present work, a comparative study is carried out among large eddy simulations, performed with various grid resolutions, a Reynolds averaged Navier-Stokes simulation, and experimental data concerning the well-known Sandia D flame test case. In all the simulations, a flamelet progress variable model has been employed using various hypotheses for the joint probability density function closure. The filtered approach proved to be more accurate than the averaged one, even for the coarser grid used in this work. In fact both approaches have shown poorly accurate predictions in the first part of the combustion chamber, but only by the large eddy simulation one is capable to recover the inlet discrepancies with respect to the experimental data going along the streamwise direction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/476310
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact