We prove surface and volume mean value formulas for classical solutions to uniformly elliptic equations in divergence form with Holder continuous coefficients. The kernels appearing in the integrals are supported on the level and superlevel sets of the fundamental solution relative the adjoint differential operator. We then extend the aforementioned formulas to some subelliptic operators on Carnot groups. In this case we rely on the theory of finite perimeter sets on stratified Lie groups.

Mean value formulas for classical solutions to some degenerate elliptic equations in Carnot groups

Pallara, DIEGO;
2024-01-01

Abstract

We prove surface and volume mean value formulas for classical solutions to uniformly elliptic equations in divergence form with Holder continuous coefficients. The kernels appearing in the integrals are supported on the level and superlevel sets of the fundamental solution relative the adjoint differential operator. We then extend the aforementioned formulas to some subelliptic operators on Carnot groups. In this case we rely on the theory of finite perimeter sets on stratified Lie groups.
File in questo prodotto:
File Dimensione Formato  
10.3934_dcdss.2022144.pdf

solo utenti autorizzati

Tipologia: Versione editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 381.28 kB
Formato Adobe PDF
381.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/476125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact