We prove the Gamma-convergence of the renormalised Gaussian fractional s-perimeter to the Gaussian perimeter as s -> 1(-). Our definition of fractional perimeter comes from that of the fractional powers of Ornstein Uhlenbeck operator given via Bochner subordination formula. As a typical feature of the Gaussian setting, the constant appearing in front of the Gamma-limit does not depend on the dimension.
Gamma-convergence of Gaussian fractional perimeter
Carbotti A.;Cito S.;Pallara D.
2023-01-01
Abstract
We prove the Gamma-convergence of the renormalised Gaussian fractional s-perimeter to the Gaussian perimeter as s -> 1(-). Our definition of fractional perimeter comes from that of the fractional powers of Ornstein Uhlenbeck operator given via Bochner subordination formula. As a typical feature of the Gaussian setting, the constant appearing in front of the Gamma-limit does not depend on the dimension.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CarCitLamPal23AdvCV.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.95 MB
Formato
Adobe PDF
|
2.95 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.