This paper aims at studying the vibrational behavior and dynamical stability of small-scale axially moving beams resting on the viscoelastic-Pasternak foundation in a hygro-thermal environment, according to a nonlocal strain gradient Rayleigh beam model. The Galerkin procedure is applied to determine the eigenvalues of the dynamic system of equations together with the stability regions of the system. A comparison study of the proposed method is performed, first, against the available literature. Thus, we examine the effect of the rotary inertia, flexural stiffness, boundary conditions, scale parameters, foundation conditions, and environmental loads, on the vibrational frequencies and stability boundaries of the system. Based on the numerical results, an increased flexural stiffness and strain gradient parameter enhance the vibrational frequencies of the system. It is also demonstrated that the destructive effects of hygro-thermal conditions can be alleviated by a fine-tuning of the foundation characteristics. The outcomes of the present research can represent a useful benchmark for optimization design purposes of moving nanosystems in complex environmental conditions.

Nonlocal study of the vibration and stability response of small-scale axially moving supported beams on viscoelastic-Pasternak foundation in a hygro-thermal environment

Dimitri R.;Tornabene F.
In corso di stampa

Abstract

This paper aims at studying the vibrational behavior and dynamical stability of small-scale axially moving beams resting on the viscoelastic-Pasternak foundation in a hygro-thermal environment, according to a nonlocal strain gradient Rayleigh beam model. The Galerkin procedure is applied to determine the eigenvalues of the dynamic system of equations together with the stability regions of the system. A comparison study of the proposed method is performed, first, against the available literature. Thus, we examine the effect of the rotary inertia, flexural stiffness, boundary conditions, scale parameters, foundation conditions, and environmental loads, on the vibrational frequencies and stability boundaries of the system. Based on the numerical results, an increased flexural stiffness and strain gradient parameter enhance the vibrational frequencies of the system. It is also demonstrated that the destructive effects of hygro-thermal conditions can be alleviated by a fine-tuning of the foundation characteristics. The outcomes of the present research can represent a useful benchmark for optimization design purposes of moving nanosystems in complex environmental conditions.
In corso di stampa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/473950
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 33
social impact