Left bundle branch block (LBBB) is a common disorder in the heart’s electrical conduction system that leads to the ventricles’ uncoordinated contraction. The complete LBBB is usually associated with underlying heart failure and other cardiac diseases. Therefore, early automated detection is vital. This work aimed to detect the LBBB through the QRS electrocardiogram (ECG) complex segments taken from the MIT-BIH arrhythmia database. The used data contain 2655 LBBB (abnormal) and 1470 normal signals (i.e., 4125 total signals). The proposed method was employed in the following steps: (i) QRS segmentation and filtration, (ii) application of the Maximal Overlapped Discrete Wavelet Transform (MODWT) on the ECG R wave, (iii) selection of the detailed coefficients of the MODWT (D2, D3, D4), kurtosis, and skewness as extracted features to be fed into the Adaptive Neuro-Fuzzy Inference System (ANFIS) classifier. The obtained results proved that the proposed method performed well based on the achieved sensitivity, specificity, and classification accuracies of 99.81%, 100%, and 99.88%, respectively (F-Score is equal to 0.9990). Our results showed that the proposed method was robust and effective and could be used in real clinical situations.

Automated Detection of Left Bundle Branch Block from ECG Signal Utilizing the Maximal Overlap Discrete Wavelet Transform with ANFIS

Roberto De Fazio
Penultimo
Writing – Original Draft Preparation
;
Paolo Visconti
Ultimo
Writing – Review & Editing
2022-01-01

Abstract

Left bundle branch block (LBBB) is a common disorder in the heart’s electrical conduction system that leads to the ventricles’ uncoordinated contraction. The complete LBBB is usually associated with underlying heart failure and other cardiac diseases. Therefore, early automated detection is vital. This work aimed to detect the LBBB through the QRS electrocardiogram (ECG) complex segments taken from the MIT-BIH arrhythmia database. The used data contain 2655 LBBB (abnormal) and 1470 normal signals (i.e., 4125 total signals). The proposed method was employed in the following steps: (i) QRS segmentation and filtration, (ii) application of the Maximal Overlapped Discrete Wavelet Transform (MODWT) on the ECG R wave, (iii) selection of the detailed coefficients of the MODWT (D2, D3, D4), kurtosis, and skewness as extracted features to be fed into the Adaptive Neuro-Fuzzy Inference System (ANFIS) classifier. The obtained results proved that the proposed method performed well based on the achieved sensitivity, specificity, and classification accuracies of 99.81%, 100%, and 99.88%, respectively (F-Score is equal to 0.9990). Our results showed that the proposed method was robust and effective and could be used in real clinical situations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/471688
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact