This work studies the size-dependent free vibration response of functionally graded (FG) nanoplates using a layerwise theory. The proposed model supposes not only a higher-order displacement field for the core but also the first-order displacement field for the two face sheets, thereby maintaining an interlaminar displacement continuity among layers. Unlike the conventional layerwise models, the number of variables is kept fixed and does not increase for an increased number of layers. This is a very important feature compared to conventional layerwise models and facilitates significantly the engineering analyses. The material properties of the FG nanoplate are graded continuously through the thickness direction in accordance with a power-law function. The Eringen’s nonlocal elasticity theory is here adopted to relax the continuum axiom required in classical continuum mechanics and hence hopeful to capture the small size effects of naturally discrete nanoplates. The equations of motion of the problem are obtained via a classical Hamilton’s principle. The present layerwise model is implemented with a computationally efficient C0- continuous isoparametric serendipity elements and applied to solve a large-scale discrete numerical problem. The robustness and reliability of the developed finite element model are demonstrated by a comparative evaluation of results against predictions from literature. The comparative studies show that the proposed finite element model is: (a) free of shear locking, (b) accurate with a fast rate convergence for both thin and thick FG nanoplates, and (c) excellent in terms of numerical stability. Moreover, a detailed parametric analysis checks for the sensitivity of the vibration response of FG nanoplates to the aspect ratio, length-to-thickness ratio, nonlocal parameter, boundary conditions, power-law index, and modes shapes. Referential results are also reported, for the first time, for natural frequencies of FGM nanoplates which will serve as benchmarks for further computational investigations.

Nonlocal vibration of functionally graded nanoplates using a layerwise theory

Rossana Dimitri;Francesco Tornabene
In corso di stampa

Abstract

This work studies the size-dependent free vibration response of functionally graded (FG) nanoplates using a layerwise theory. The proposed model supposes not only a higher-order displacement field for the core but also the first-order displacement field for the two face sheets, thereby maintaining an interlaminar displacement continuity among layers. Unlike the conventional layerwise models, the number of variables is kept fixed and does not increase for an increased number of layers. This is a very important feature compared to conventional layerwise models and facilitates significantly the engineering analyses. The material properties of the FG nanoplate are graded continuously through the thickness direction in accordance with a power-law function. The Eringen’s nonlocal elasticity theory is here adopted to relax the continuum axiom required in classical continuum mechanics and hence hopeful to capture the small size effects of naturally discrete nanoplates. The equations of motion of the problem are obtained via a classical Hamilton’s principle. The present layerwise model is implemented with a computationally efficient C0- continuous isoparametric serendipity elements and applied to solve a large-scale discrete numerical problem. The robustness and reliability of the developed finite element model are demonstrated by a comparative evaluation of results against predictions from literature. The comparative studies show that the proposed finite element model is: (a) free of shear locking, (b) accurate with a fast rate convergence for both thin and thick FG nanoplates, and (c) excellent in terms of numerical stability. Moreover, a detailed parametric analysis checks for the sensitivity of the vibration response of FG nanoplates to the aspect ratio, length-to-thickness ratio, nonlocal parameter, boundary conditions, power-law index, and modes shapes. Referential results are also reported, for the first time, for natural frequencies of FGM nanoplates which will serve as benchmarks for further computational investigations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/470733
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact