In the present work we study the static response of functionally graded (FG) porous nanocomposite beams, with a uniform or non-uniform layer-wise distribution of the internal pores and graphene platelets (GPLs) reinforcing phase in the matrix, according to three different patterns. The finite-element approach is developed here together with a non-local strain gradient theory and a novel trigonometric two-variable shear deformation beam theory, to study the combined effects of the non-local stress and strain gradient on the FG structure. The governing equations of the problem are solved introducing a three-node beam element. A comprehensive parametric study is carried out on the bending behavior of nanocomposite beams, with a particular focus on their sensitivity to the weight fraction and distribution pattern of GPLs reinforcement, as well as to the non-local scale parameters, geometrical properties, and boundary conditions. Based on the results, it seems that the porosity distribution and GPLs pattern have a meaningful effect on the structural behavior of nanocomposite beams, where the optimal response is reached for a non-uniform and symmetric porosity distribution and GPLs dispersion pattern within the material.
Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory
Dimitri R.;Tornabene F.
2022-01-01
Abstract
In the present work we study the static response of functionally graded (FG) porous nanocomposite beams, with a uniform or non-uniform layer-wise distribution of the internal pores and graphene platelets (GPLs) reinforcing phase in the matrix, according to three different patterns. The finite-element approach is developed here together with a non-local strain gradient theory and a novel trigonometric two-variable shear deformation beam theory, to study the combined effects of the non-local stress and strain gradient on the FG structure. The governing equations of the problem are solved introducing a three-node beam element. A comprehensive parametric study is carried out on the bending behavior of nanocomposite beams, with a particular focus on their sensitivity to the weight fraction and distribution pattern of GPLs reinforcement, as well as to the non-local scale parameters, geometrical properties, and boundary conditions. Based on the results, it seems that the porosity distribution and GPLs pattern have a meaningful effect on the structural behavior of nanocomposite beams, where the optimal response is reached for a non-uniform and symmetric porosity distribution and GPLs dispersion pattern within the material.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.